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A numerical technique is presented for locating the zeros of an analytic function in the com- 
plex plane. The methods used are not new: the important content of this paper is the develop- 
ment and testing of a method to a point where it may be used with confidence and reliability. 
An application considered here is the location of the eigenvalues of the Orr-Sommerfeld 
equation for plane Poiseuille flow in a specified portion of the complex (eigenvalue) plane. 
0 1986 Academic Press, Inc. 

1. INTRODUCTION 

There are many problems for which it is necessary to locate, by numerical com- 
putation, the complex zeros of a given analytic function. An important class of 
problems arises when a system of linear differential equations is solved together 
with boundary conditions. The eigenvalues for such problems consist of those 
values of some parameter for which a solution of the homogeneous equations exists, 
as determined by the zeros of a function of that parameter. Many of the phenomena 
which are currently under investigation using computation as the major tool are so 
complicated that there is no general theory regarding the spectra. Thus it is essen- 
tial to have methods for finding the zeros of complex functions which are both 
powerful and flexible. 

The present paper is concerned mainly with the general problem of locating the 
zeros of an analytic function in a finite region of the complex plane. As a nontrivial 
illustration of the use of the method, results are given for a particular case of the 
Orr-Sommerfeld equation for plane Poiseuille flow. This problem was chosen 
because it has been used previously as a test problem by Antar [2], whose methods 
are developed further in this paper. In Antar’s paper, some 32 eigenvalues are found 
to varying degrees of precision. Some of his results are correct to only one or two 
significant figures while others are extremely accurate: moreover, the procedure 
used for the numerical quadratures did not always converge satisfactorily. A further 
problem with Antar’s method is that it is necessary to compute the derivative of the 
function whose zeros are sought, and this more than doubles the difficulty of the 
calculation. 
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The methods which are developed here stem from work by Delves and Lyness 
[6] on the location of the zeros of analytic functions. Abd-Elall, Delves, and Reid 
[ 1 ] have also considered the problem of locating zeros and poles of a function, but 
that is not pursued here. For the Orr-Sommerfeld equation it is shown that highly 
accurate results may be obtained for the eigenvalues even when ten eigenvalues are 
simultaneously computed. The basic principles are simple indeed and have a history 
of at least a hundred years. Suppose that the function whose zeros are sought is 
denoted byf(z) and that it is analytic in an open region of the complex plane. If C 
is a regular curve which lies entirely in this region then the integrals 

(1.1) 

contain all of the information necessary for the computation of those zeros which 
lie inside C. The use of these integrals, numerically evaluated, for the extraction of 
this information was investigated in some detail by Delves and Lyness. They con- 
sidered three approaches. The lirst and most direct approach requires explicit 
evaluation of both f(z) and its derivative f’(z): a FORTRAN implementation of 
this method by Botten et al. has recently been made available [3]. The third 
approach involves approximating the derivatives using Taylor series, and is not 
considered here. The second approach uses integration by parts to remove the for- 
mal dependence on f’(z) and this leads to multivalued logarithm functions which 
are difficult to deal with. The main contribution of this paper is to develop a simple 
method of avoiding the computation of the derivative f’(z) and a simple formula 
for estimating the errors in evaluating the integrals S,. The theory is outlined in 
Section 3; however, the error formulae given there suffer from the fact that they 
involve the unknown zeros of the functionf(z). Section 4 is devoted to the practical 
implementation of the method including a plausible, but not rigorous, derivation of 
an error estimate for S, which may be computed at little cost fromf(z). Numerical 
experiments are reported in Sections 5 and 6. In Section 5 a simple function is 
chosen to test a number of aspects of the method, and in particular the error 
estimate (4.10). In Section 6 the Orr-Sommerfeld equation is used as an example 
which is more realistic. Parameters are chosen so that the results may be compared 
with known results [2, 121. 

In should be mentioned that an alternative approach has been given recently in a 
paper by Carpentier and DOS Santos [4] and some comments will be made below 
about the relationship between their approach and the present one. As in [2, 43, 
circular integration contours are used here, since the integrands are analytic so that 
the trapezoidal approximation converges exponentially fast even after integration 
by parts. This is an important consideration and it constitutes good reason for 
avoiding contours with corners, such as would obtain if a circular region were sub- 
ject to radial bisection or if a system of squares were used to avoid overlap between 
adjoining search regions. 
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2. BASIC PROCEDURE 

The basic search region used in this paper is a disc, and no loss in generality is 
caused by restricting attention to a unit disc centered at the origin in the complex 
plane. Thus consider the problem of locating the zeros of a functionf(z) which lie 
within the unit circle. It is assumed that f(z) is analytic in some larger disc IzI < R, 
R > 1, and that none of the zeros of f(z) lie on the circle IzI = 1. In the unit disc 
f(z) has N zeros at the points aj, j = 1,2 ,..., N and there are a further N’ zeros in the 
region 1 < IzI CR at the points bj, j= 1, 2 ,..., N’. The latter zeros are important in 
discussing the numerical implementation of the method. The integrals S, of Eq. 
(1.1) may be evaluated by residues to give simple symmetric functions of the 
interior zeros, viz., 

S,= f a;. (2.1) 
j=l 

This formula is correct even if some of the roots are repeated, that is, a root of 
order k is counted k times in the sum. 

The integrals (1.1) may also be evaluated numerically by methods which are the 
subject of Sections 3 and 4. Assume that computed values of N and S, are available. 
Then it is possible to construct a polynomial P,,,(z) whose zeros are the interior 
zeros aj. Defining P,,,(Z) as 

PN[z] = i (z - aj) 
j= 1 

= j$o AjzNpi 
(2.2) 

it is seen that the coefficients A, are symmetric functions of the roots aj, albeit dif- 
ferent symmetric functions from the integrals S,. There is a standard relationship 
which enables the A, to be computed recursively from S,. It is [7] 

S1-A,=0 

&-A,S,-2A2=0 
(2.3) 

Sk-AlSk-l+AA2Sk-2- ... +(-l)kkAk=O, k = 1, 2 ,..., N. 

The problem of finding the roots aj has now been reduced to that of finding N 
zeros of an Nth order polynomial. Moreover, it is known at the outset that these N 
roots all lie in the unit disc. Locating these zeros is a simple process. In this work 
the following procedure is used. First, a zero a, is found using Newton’s method 
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with a starting point near the origin. The contribution of this zero is then subtrac- 
ted from the integrals S, to define a new set of coefficients Sk’) by 

Sjll)=Sn-a;, n = 0, l)...) N- 1, (2.4) 

and from it, a new polynomial P,,- i(z) is constructed using equations (2.3). A zero 
of this new polynomial is then found and refined using iteration on the original 
polynomial. If this new zero is closer to the origin than the first one, it replaces it 
and the procedure is repeated. If not, new coefficients Sp) are constructed by the 
formula 

Si2’=S,- i aj”, n = 0, l,..., N - 2, (2.5) 
j=l 

and from it a new polynomial PN-2(z). A further zero is now found and relined, 
and this process repeated until N zeros are found, with the restriction that as each 
new zero is found, any previous zeros further from the origin than it are discarded. 
In this way, numerical stability of the process of deflating the original polynomial is 
ensured [S] because the zeros are eliminated in order of increasing magnitude. This 
method has been found to be completely reliable in practice. 

3. NUMERICAL QUADRATURE 

In order to implement the method of the last section it is necessary to evaluate 
the number of zeros, N, and the integrals S,. In practice, the algorithms needed for 
this are interdependent, but for convenience of presentation a treatment of the 
quadrature method is given in this section under the assumption that N is already 
known. 

The aim is to approximate the integrals (1.1) by a quadrature rule, and to 
eliminate explicit reference to the derivative f’(z). One possibility, employed by 
Carpentier and DOS Santos [4], is to apply the trapezoidal rule directly to (1.1) 
and then use integration by parts to eliminate the combinationf’(z)/f(z) from the 
quadrature formulae in favor of a logarithm. The approach here is to apply 
integration by parts first and then numerical quadrature, which leads to an essen- 
tially different set of formulae. Integration by parts will introduce the logarithm 
function and with it a branch point at each of the zeros off(z). Since there are N 
zeros off(z) inside the contour, the imaginary part of lnfincreases by 27rN around 
the contour. However, the logarithm of the function g(z) = z-“f(z) is single valued 
around the contour. The difference between the analytic properties off(z) and g(z) 
is that the latter has an Nth order pole at the origin. For n > 0, if g(z) is substituted 
into Eq. (1.1) and residue theory applied, the result is unchanged from whenf(z) is 
used because the pole is at the origin. (Of course, for n = 0 the pole does make its 
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presence felt and the integral changes to zero.) Integration by parts is now possible 
without any concern about the definition of the branch of the logarithm: this gives 

Sn=$J z”-‘ln [zzNf(z)] dz, n > 0. 
c 

(3.1) 

For the purpose of numerical quadrature, it is convenient to use polar coor- 
dinates, 

z = ,ie (3.2) 

so that the basic formula for S, becomes 

s, = 2 j2n ein@ b(e) + id@1 &I (3.3) 
0 

where the real functions p(B) and a(O) are defined by 

ln[eCiNef(eiB)] = p(e) + h(e). (3.4) 

The crucial point is that the integrand is a periodic function of 8 which ensures that 
the numerical quadrature scheme converges exponentially fast. 

The integral is now approximated by the m-point trapezoidal rule, viz., 

p-n f e’“““‘“[p(27rk/m) + ia(27rk/m)]. (3.5) 
m k=l 

It is well known [8, 111 that for contour integrals of analytic functions the 
trapezoidal rule converges exponentially as a function of m. The main purpose of 
this section is to develop a formula for the error in a form which will give a 
criterion for deciding the value of m in any particular computation. To this end it is 
convenient to write 

ln[z-Nf(z)] = $ ln( 1 -a+-‘) + 5 ln(bj- z) + Y(z). (3.6) 
j=l j=l 

Becausef(z) has no singularities in the disc IzI < R, the function Y(z) is analytic in 
this region. The integrand in (3.4) is obtained by setting z = exp(iO), so that Eq. 
(3.5) may be written as 

pLI!~ f  e2niWm ln( 1 _ uj e-2d+) 

I=1 k=l 

-i t f e2niNm ln(bj _ e2rWm) 

I=1 k=l 
(3.7) 

-- i ktl e2niWm Y(exp(2A/m)). 
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It is convenient to break up the integrals S, and their approximations q into three 
parts as indicated by the three separate sums in this equation. For the integrals, the 
three parts are 

SL’)= 2 a; 
j=l 

spa 

sp = 0. 

The corresponding parts of r and the errors, are discussed in turn. 
The first sum, approximating S!,‘), may be rearranged as 

(3.8) 

(3.9) 

N 

= 

c 4 

a; 1+&a?+- aj’” + . . . 
j=l n+2m I 

which exhibits the error in a useful form. The second sum may be treated similarly 
to give 

77$2’=3 f e2ninklm 
m e2nilklm 

In bj- c - 
,=I k=l ,=I lb; 

= jEl ,t, --$ f e2ni(n +Oklm 

Jk=l 

= E b;{m!$$;~~;,+ ..a (m>n). 
j=l 

(3.10) 

The third sum has been treated in detail in Lyness and Delves [ 111 who show that 
the following bound may be written 

(3.11) 

From these results it is seen that, for large m, the dominant errors are due to the 



42 B. DAVIES 

zeros closest to the integration contour. An interior zero contributes an error 
approximated by 

p(l) - $1) N 
na!+” 

n n --, 
n+m 

while an exterior zero contributes approximately 

7w2) N nb;“, 
n m-n 

(3.12) 

(3.13) 

4. IMPLEMENTATION AND ERROR CONTROL 

It is now possible to consider the numerical implementation of the method. The 
first quantity which is needed in N, the number of zeros off. It is appropriate here 
to stress the fact that no simple algorithm will be completely failsafe. Since the 
evaluation of the integrals S, for n > 0 uses the trapezoidal rule, it is convenient to 
use equally spaced values off(z) for later use in the quadrature. Suppose then that 
values off(z) are known at a number of equally spaced points around the unit cir- 
cle. N may now be determined by the principle of argument, since the total increase 
during one complete circuit is 27rN. However, the argument off(z) at each point is 
only determined to within an arbitrary multiple of 2x. To reduce the ambiguity, the 
argument is arbitrarily chosen to lie in the interval ( -x, n] at some initial point on 
the circle and then at each successive point around the circle it is chosen so that the 
jump from point to point is less than K. The maximum jump in the argument will 
be denoted omax. For functions which are analytic in a disc IzI < R, R > 1, Qmax can 
always be made arbitrarily small by using a sufficiently large number of points. Car- 
pentier and DOS Santos [4] have given a criterion to decide when N is reliably 
determined from the numerically computed argument based on two tests; viz., 

with Q0 = 3x/4 and also 

@Inax < @o (4.1) 

l/6.1 < lf(z~M-h+ III< 6.1, k = l,..., m. (4.2) 

They state that these tests are expected to be sufficient even when the function has 
double zeros, except in very anomalous cases. 

Information about the accuracy of the other integrals S,, n >O, may also be 
obtained from @,,,, using geometric arguments similar to those of [4]. If there is 
an interior zero a, which is the main contributor to the jump amax, then reference 
to Fig. 1 shows that its magnitude laDl may be estimated from 

tan@/2) N 
sin(rc/m) 

Wdm) - IaD I (4.3) 
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FIG. 1. Geometry of error estimates. 

where the equality holds if the argument is mid-way between arg(z,) and arg(z, + ,). 
If the zero is of order I, then 

@ max = u (4.4) 

so that laDI is given as 

I%1 N 1 - (F/m) cot(@max/W 

.,xp[-~cot(~)] 

<exp[-zcot(p)]. 

(4.5) 

When this is used in Eq. (3.12) it gives the following estimate for the contribution 
to the error from this dominant zero: 

Ip(l)-s(1)I 21 
n n & expC - ~~cW%,,/2)1. (4.7) 

Similarly, if the dominant zero is just outside the unit circle, at bD, then Eq. (4.5) 
becomes 

(4-g) 

and substitution into Eq. (3.12) gives 

IF(*)/ N m n - exp[ -nl cot(Qi,,,/2)] 
m-n 

(m>n). (4.9) 

These results are all that is needed to give a simple criterion to estimate the errors 
in the integrals from a readily available byproduct of the computation. Since the 
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total increase in phase is 27cN, Qi,,, must exceed 2zNlm and using this in either 
(4.7) or (4.9) gives for the dominant contribution to the error from a simple zero 
the estimate 

IT-S,I Z&k exp[-ncot(y)] (mgn). (4.10) 

The worst case is for n = N, and this does not increase with N. It should be 
emphasised that this is an estimate based on a series of approximations, and in par- 
ticular on the assumption that the function is not too anomalous. Because of the 
exponential dependence of the error estimate on Qmax, and thus on m in the 
asymptotic (large m) region, it is only the zeros closest to the contour which con- 
tribute appreciably to the errors. Thus the estimate of the dominant error is also an 
estimate of the total error: this has certainly proved to be the case in the numerical 
experiments to be reported below. 

The estimate (4.10) may be used in a practical implementation as follows: First a 
value of Q0 is chosen in (4.1) on the basis of the accuracy required for the 
evaluation of the integrals S,. Typically this will be in the range n/3 to n/5; in any 
event it should not exceed 37r/4. The value off(z) is now computed at eight equally 
spaced points around the circle, and if either of the tests (4.1) or (4.2) is failed, the 
number of points is doubled by filling in the midpoints with the new values off(z) 
followed by a completely new evaluation of the argument around the new set of 
points. This process is continued until the criteria are all met or until the maximum 
allowed value to m is exceeded. In practice the criterion (4.1) becomes the impor- 
tant one once Go is reduced to values in the suggested range, and we have experien- 
ced no problems with an implementation which ignores (4.2) altogether (see next 
section). As the computation proceeds, a check should also be kept on the expected 
number of zeros, N. If this number is too large (see next section) then much of the 
accuracy in the determination of the S, will be lost in the ensuing determination of 
the zeros, and the search should be terminated in favor of two or more searches 
using smaller overlapping circles. Once the zeros have been determined, then they 
may be refined, for example, by using the secant method or by a repeated use of the 
present method. 

5. SIMPLE TEST PROBLEMS 

In this section the method is used on simple functions with known zeros. For the 
integrals S, and the zeros aj, the errors are calculated and compared with the 
theoretical estimates given in Section 4. 

The function used is simply 

f(z) = sin(5rcz - b/2) cos(5xz + h/2) (5.1) 
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FIG. 2. Errors in S, as function ofm. 
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which has two infinite rows of zeros on the lines Im(z) = +i/lO at 

n i +2n+l i 
Q+G’ --- 

- 10 10’ 
n = 0, 1) 2 ).... 

For the first test the circle Iz( = $ was used. There are nine zeros inside this circle; 
the integrals S, to Sg and the corresponding values of these zeros, have been com- 
puted for values of m ranging from 200 to 2500 in steps of 100. The calculations 
were carried out on a Univac 1100/82 using double precision complex arithmetic. 
The dependence of the errors on m are indicated in Figs. 2 and 3. In presenting the 
data of Figs. 2 and 3, only the worst error is shown for each value of m. Also shown 
on each of these figures is the error estimate (4.10). Two facts are evident from these 
diagrams: first, convergence is at an exponential rate, and second, Eq. (4.10) is a 
quite reliable criterion for use in an automated search routine. 

In a practical implementation of the method as an automated search routine, m 
will be chosen by requiring Qmax to be reduced to below some pre-set tolerance 
while the number of roots will be initially unknown. Thus a second series of tests 
were carried out using the function (5.1). For these computations, m was adjusted 
to give @,,, = n/9 while the radius of the circle was increased from 0.5 to 1.5 in 
steps of 0.1. Each step introduces a further four zeros, so that the largest circle 
encloses 29 zeros. These tests generate a great deal of data: however, the relevant 
question relates to the loss of accuracy as the number of zeros increases. It was 
observed that the least accurate roots are always those closest to the center of the 
circle (as might be expected). Figure 4 shows the salient trends, plotted as a 
function of N. For each N, the worst case error in an integral is presented, together 
with the error estimate (4.10). It is seen that there is no loss of accuracy in the 
integrals as N increases. Also shown is the worst case error in a root, which is 
always the error in the root at z = i/10, and this is seen to increase steadily as N is 

- computed zero (worst case) 

-- computed integral (worst case) 

lo+- ----- 

theoretical estimate for integral 

/ 
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increased. The conclusion is that up to about 10 zeros may be computed in any one 
circle to an accuracy which is roughly comparable with that of the integrals. 
Beyond that, the loss of accuracy in determining the zeros from the integrals 
becomes increasingly marked, particularly for those zeros which are deepest inside 
the circle. Nevertheless, large numbers of zeros may be located with considerable 
precision; certainly with sufficient precision to enable the search to be refined as 
necessary. 

One further set of computations was carried out, in which the radius of the circle 
was again increased by steps of 0.1 while m was selected in each case to achieve the 
maximum possible accuracy of the integrals using complex double precision. It was 
observed that the errors become unmanageable beyond about forty zeros, since at 
this point all of the precision in the integrals was lost in the algorithms needed to 
locate the zeros. In fact, any automatic implementation of this method ought to 
have a maximum value of N set beyond which the calculation is abandoned and a 
smaller circle selected. Depending on the choice of Qm,,, this maximum could be in 
the order of 10 to 20. 

6. THE ORR-SOMMERFELD PROBLEM 

The Orr-Sommerfeld equation describes the stability of two-dimensional, incom- 
pressible parallel flow with regard to infinitesimal disturbances [lo]. It takes the 
form 

(D*-a*)*q4=iaR{(U-c)(D2-a*)qb-~D*U} (6.1) 

where D denotes differentiation with respect to X, c( is the disturbance wave num- 
ber, c its speed, and R is the flow Reynolds number. For the purpose of this paper, 
the function U(X), which is the undisturbed laminar flow profile, has been taken as 
1 -x2 which is appropriate for plane Poiseuille flow between parallel plates at 
x = + 1. The usual boundary conditions are 

4(k 1)=0 
D#(f l)=O. 

(6.2) 

Mack has shown [ 123 that for the parameter values c1= 1, R = 10,000, there are 
32 eigenvalues in the rectangle 0 < Re(c) < 1.0, - 1.1 < Im(c) < 0. These eigenvalues 
are given, to five decimal places, in Mack’s paper. These were the eigenvalues on 
which Antar [2] chose to test his method, and they are used again in this paper by 
locating the zeros of a matching determinant as a function of c. Because of the 
relatively high value of the Reynolds number, the calculation of the matching deter- 
minant to high accuracy is very time consuming and so the tolerance set of this part 
of the computation was 5 significant figures in the initial search. The search was 
performed in two stages. First, a number of overlapping circles were chosen with a 
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radius of 0.15. This value was chosen to limit the number of eigenvalues in any one 
circle to about ten because the accuracy off(c) was only 5 significant figures. For 
each circle, m was increased by powers of two until @,,, fell below 7c/6, at which 
point the error estimate equation (4.10) shows that further increase in m is pointless 
without more accurate values of f(c). Errors varied from 2 in the fourth decimal 
place to complete agreement with Mack’s results. The worst cases, as might be 
expected, were for zeros near the center of the two circles which contain the most 
zeros. The total number of evaluations off(c) to this point was 1600, or 50 per zero 
located. In order to improve the accuracy using the same circles, the number of 
function evaluations would need to be doubled at least and the accuracy of the 
evaluations would need to be improved. This is not a sensible strategy when so 
much information is available at this point. Thus, the second stage of the search 
consisted of simply using the 32 eigenvalues as the center of 32 new circles, each of 
radius 0.01, which is about one quarter of the distance between the closest eigen- 
values. The actual values of the 32 eigenvalues are not listed here because they are 
of secondary importance. The results were in complete agreement with Mack for 29 
of the 32 eigenvalues. Seventeen of Mack’s eigenvalues are taken from Orszag [ 131, 
and the two labelled P9 and PlO by Mack have suffered a transposition error. For 
these two, the present calculation agrees with Orszag rather than Mack. The 
remaining disagreement is in the real part of the mode labelled Sl by Mack. The 
real part is given there as 0.67759 whereas the present result is 0.67764. No 
definitive explanation can be given for this discrepancy, except to emphasize that, in 
these calculations, it is the Wronskian which is calculated to 7 decimal digits, not 
just each step in the solution of the differential equation. Thus, the most likely con- 
clusion is that there are some small typographical errors in [12]. 

It will be observed that the choice of search circles used for this particular 
numerical experiment used the information on the location of the eigenvalues from 
Mack’s paper. Of course, the method does not depend on this advance knowledge 
for its success; it has been used here because it is typical of realistic problems that 
information will be available at an early stage about the qualitative nature of 
solutions, often from preliminary computation. 

7. CONCLUSION 

The methods set out in this paper constitute a reliable way of locating the zeros 
of an analytic function, and of maintaining effective control on the accuracy. Apart 
from the numerical results reported in Sections 5 and 6, the method is being 
employed in extensive calculations of the spectra of waves in non-ideal plasmas. No 
problems have been encountered with the method in this application. On those 
occasions when an unwise choice is made for a search circle, the progressive 
numerical results indicate at a fairly early stage of the calculation that a new choice 
is needed. On no occasion has the method appeared to converge to numbers which 
later proved to be in error. 
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In conclusion, a warning must be sounded. The methods of this paper depend in 
an essential way on the assumed properties of the functionf(z). In particular, it is 
relatively easy in many eigenvalue problems to introduce poles into the determinant 
or other functions whose zeros are sought, and if this is done, the computations will 
probably converge quite happily to erroneous results. Any such errors should be 
revealed when refinement and checking is undertaken, and for this reason alone 
such practice is recommended. For the same reason, the fact that circles overlap 
when they are used to search a larger region is an advantage, since it often happens 
that the same zero is located in more than one circle, and then values may be com- 
pared as a check. 
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